在本文中,我们介绍了一个单像素的到达方向(DOA)估计技术,利用了曲线图注意网络(GAT)的深度学习框架。使用编码孔径技术实现物理层压缩,探测使用一组时空不连贯模式探测入射在孔径上的远场源的光谱。然后将该信息进行编码并压缩到编码孔径的信道中。编码孔径基于元表面天线设计,并且它用作接收器,展示单通道并替换基于传统的多通道光栅扫描基于DOA估计的解决方案。 GAT网络使得压缩DOA估计框架能够直接从使用编码孔径获取的测量来学习DOA信息。该步骤消除了对额外的重建步骤的需求,并显着简化了处理层以实现DOA估计。我们表明所提出的GAT集成单像素雷达框架即使在相对低的信噪比(SNR)水平下也可以检索高保真DOA信息。
translated by 谷歌翻译
直接到 - 卫星(DTS)通信最近已获得支持全球连接的物联网(IoT)网络的重要性。但是,地球周围密集部署的卫星网络相对较长的距离会导致高路径损失。此外,由于必须部分在物联网设备中进行诸如光束成型,跟踪和均衡之类的高复杂性操作,因此硬件复杂性和对物联网设备的高容量电池的需求都会增加。可重新配置的智能表面(RISS)具有增加能源效率并在传输环境而不是物联网设备上执行复杂的信号处理的潜力。但是,RIS需要级联通道的信息,以更改事件信号的阶段。这项研究将试点信号评估为图形,并将此信息纳入图表网络(GATS),以通过试点信号来跟踪相位关系。提出的基于GAT的通道估计方法研究了DTS IoT网络的性能,以解决不同的RIS配置,以解决具有挑战性的通道估计问题。结果表明,与常规深度学习方法相比,在变化条件下,拟议的GAT均表现出更高的性能,并且在变化的条件下具有更高的鲁棒性,并且计算复杂性较低。此外,根据提议的方法,在通道估计下具有离散和不均匀相移的RIS设计研究了位错误率性能。这项研究的发现之一是,必须在RIS设计期间考虑操作环境的渠道模型和通道估计方法的性能,以尽可能利用性能改进。
translated by 谷歌翻译
将推动下一代通信技术,以陆地网络与含有高空平台站和低地球轨道卫星的MEGA-星座的陆地网络(NTNS)的合作。另一方面,人类已经开始在一条漫长的道路上建立在其他行星上的新栖息地。这认为NTN与NTNS具有深度空间网络(DSN)的合作。在这方面,我们提出了使用可重构的智能表面(RISS)来改善和升级这一合作,因为它们与空间的操作环境的尺寸,重量和电力限制完全匹配。通过针对挑战,用例和公开问题来提出RIS协助非陆地和行星通信的全面框架。此外,通过仿真结果讨论了环境效应下RIS辅助NTN的性能,例如太阳闪烁和卫星阻力。
translated by 谷歌翻译